Interference (and What Is Done about It)

Giovanni Vannucci

February 25, 2013

Dimensions of Radio Signals

Radio Signals exist in three "dimensions"

Space Time Frequency

Space – Idealized View of Radio Propagation

Space – Real-World Radio Propagation

Many \$billions have been spent for good models of real-world radio propagation.

Space – Directional Antennas

Arrays, smart antennas, MIMO: provide even greater flexibility.

Space – Sectorization

Antenna "downtilt" is also used.

Space – Real-World Directional Antenna

Theory says: a perfect directional antenna would be infinitely large.

Time – Time Is Used to Allocate Capacity

Time – Real-World Propagation

Time – Real-World Propagation

Time – Real-World Multipath

Time – Guard Times

Frequency – Orthogonality of Sinusoids

Sinusoidal signals of different frequencies are mutually "orthogonal"; *i.e.*, they can be detected independently without (theoretically) mutual interference.

Frequency – Frequency bands

AWS Bands

Frequency – Real-World Transmitters

Theory says: a perfect band-limited signal would last ad infinitum.

⇒ Tradeoff between Time and Frequency

Frequency – Real-World Receivers

The Near-Far Problem

Conclusion

- Disjoint bands, service areas, transmission times are a simplified view.
- In the real world, there are techniques to avoid mutual interference, but they have limitations.
- Such limitations must be considered when deciding band allocations.